FP3 Polar Coordinates Questions

6 (a) A circle C_{1} has cartesian equation $x^{2}+(y-6)^{2}=36$. Show that the polar equation of C_{1} is $r=12 \sin \theta$.
(4 marks)
(b) A curve C_{2} with polar equation $r=2 \sin \theta+5,0 \leqslant \theta \leqslant 2 \pi$ is shown in the diagram.

Calculate the area bounded by C_{2}.
(6 marks)
(c) The circle C_{1} intersects the curve C_{2} at the points P and Q. Find, in surd form, the area of the quadrilateral $O P M Q$, where M is the centre of the circle and O is the pole.

4 The diagram shows the curve C with polar equation

$$
r=6(1-\cos \theta), \quad 0 \leqslant \theta<2 \pi
$$

(a) Find the area of the region bounded by the curve C.
(b) The circle with cartesian equation $x^{2}+y^{2}=9$ intersects the curve C at the points A and B.
(i) Find the polar coordinates of A and B.
(ii) Find, in surd form, the length of $A B$.

2 A curve has polar equation $r(1-\sin \theta)=4$. Find its cartesian equation in the form $y=\mathrm{f}(x)$.

7 A curve C has polar equation

$$
r=6+4 \cos \theta, \quad-\pi \leqslant \theta \leqslant \pi
$$

The diagram shows a sketch of the curve C, the pole O and the initial line.

(a) Calculate the area of the region bounded by the curve C.
(b) The point P is the point on the curve C for which $\theta=\frac{2 \pi}{3}$.

The point Q is the point on C for which $\theta=\pi$.
Show that $Q P$ is parallel to the line $\theta=\frac{\pi}{2}$.
(c) The line $P Q$ intersects the curve C again at a point R.

The line $R O$ intersects C again at a point S.
(i) Find, in surd form, the length of $P S$.
(ii) Show that the angle $O P S$ is a right angle.

4 (a) Show that $(\cos \theta+\sin \theta)^{2}=1+\sin 2 \theta$.
(b) A curve has cartesian equation

$$
\left(x^{2}+y^{2}\right)^{3}=(x+y)^{4}
$$

Given that $r \geqslant 0$, show that the polar equation of the curve is

$$
r=1+\sin 2 \theta
$$

(c) The curve with polar equation

$$
r=1+\sin 2 \theta, \quad-\pi \leqslant \theta \leqslant \pi
$$

is shown in the diagram.

(i) Find the two values of θ for which $r=0$.
(ii) Find the area of one of the loops.

FP3 Polar Coordinates Answers

4(a)
Area $=\frac{1}{2} \int 36(1-\cos \theta)^{2} \mathrm{~d} \theta$
$\ldots=\frac{1}{2} \int_{0}^{2 \pi} 36\left(1-2 \cos \theta+\cos ^{2} \theta\right) \mathrm{d} \theta$
$=9 \int_{0}^{2 \pi} 2-4 \cos \theta+(\cos 2 \theta+1) \mathrm{d} \theta$
$=\left[27 \theta-36 \sin \theta+\frac{9}{2} \sin 2 \theta\right]_{0}^{2 \pi}$
$=54 \pi$
(b)(i)
$x^{2}+y^{2}=9 \Rightarrow r^{2}=9$
$A \& B: 3=6-6 \cos \theta \Rightarrow \cos \theta=\frac{1}{2}$
Pts of intersection $\left(3, \frac{\pi}{3}\right) ;\left(3, \frac{5 \pi}{3}\right)$
(ii) Length $A B=2 \times r \sin \theta$

| M1 | use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$ |
| :--- | :--- | :--- |

for correct explanation of $[6(1-\cos \theta)]^{2}$ for correct limits

Attempt to write $\cos ^{2} \theta$ in terms of $\cos 2 \theta$.

Correct integration; only ft if integrating $a+b \cos \theta+c \cos 2 \theta$ with non-zero a, b, c. CSO

PI

OE (accept 'different' values of θ not in the given interval)

OE exact surd form

$\mathbf{2}$	$r-r \sin \theta=4$ $r-y=4$ $r=y+4$ $x^{2}+y^{2}=(y+4)^{2}$ $x^{2}+y^{2}=y^{2}+8 y+16$ $y=\frac{x^{2}-16}{8}$	M 1		$r \sin \theta=y$ stated or used
		A 1		
M 1		$r^{2}=x^{2}+y^{2}$ used		
		A 1 F		ft one slip
	Total		6	

7(a)
Area $=\frac{1}{2} \int(6+4 \cos \theta)^{2} d \theta$
$=\frac{1}{2}\left(\int_{-\pi}^{\pi} 36+48 \cos \theta+16 \cos ^{2} \theta\right) \mathrm{d} \theta$
$=\left(\int_{-\pi}^{\pi} 18+24 \cos \theta+4(\cos 2 \theta+1)\right) \mathrm{d} \theta$
$=[22 \theta+24 \sin \theta+2 \sin 2 \theta]_{-\pi}^{\pi}$
$=44 \pi$
(b)

At $P, r=4 ; \quad$ At $Q, r=2$;
$P\{x=\} r \cos \theta=4 \cos \frac{2 \pi}{3}=-2$
$Q\{x=\} r \cos \theta=2 \cos \pi=-2$
Since P and Q have same ' x ', $P Q$ is vertical so $Q P$ is parallel to the vertical line $\theta=\frac{\pi}{2}$
use of $\frac{1}{2} \int r^{2} \mathrm{~d} \theta$
for correct expansion of $[6+4 \cos \theta)]^{2}$ for limits

Attempt to write $\cos ^{2} \theta$ in terms of $\cos 2 \theta$
correct integration ft wrong coefficients
CSO

PI

Attempt to use $r \cos \theta$
Both

(ii)	$\theta=-\frac{\pi}{4} ; \frac{3 \pi}{4}$	A1A1ft	3	A1 for either
	$\text { Area }=\frac{1}{2} \int(1+\sin 2 \theta)^{2} \mathrm{~d} \theta$	M1		$\text { Use of } \frac{1}{2} \int r^{2} \mathrm{~d} \theta$
	$=\frac{1}{2} \int\left(1+2 \sin 2 \theta+\sin ^{2} 2 \theta\right) \mathrm{d} \theta$	B1		Correct expansion of $(1+\sin 2 \theta)^{2}$
	$=\frac{1}{2} \int\left(1+2 \sin 2 \theta+\frac{1}{2}(1-\cos 4 \theta)\right) \mathrm{d} \theta$	M1		Attempt to write $\sin ^{2} 2 \theta$ in terms of $\cos 4 \theta$
	$\begin{aligned} & =\left[\frac{3}{4} \theta-\frac{1}{2} \cos 2 \theta-\frac{1}{16} \sin 4 \theta\right]^{2} \\ & =\left[\frac{3}{4} \theta-\frac{1}{2} \cos 2 \theta-\frac{1}{16} \sin 4 \theta\right]_{-\frac{\pi}{4}}^{\frac{3 \pi}{4}} \end{aligned}$	Alft		Correct integration ft wrong coefficients only
	$=\left(\frac{9 \pi}{16}\right)-\left(-\frac{3 \pi}{16}\right)$	m1		Using c's values from (c)(i) as limits or the correct limits
	$=\frac{3 \pi}{4}$	Al	6	CSO
	Total		14	

